博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
分类器
阅读量:7223 次
发布时间:2019-06-29

本文共 580 字,大约阅读时间需要 1 分钟。

基于实例的分类器(懒惰分类器)以K-nearest为例说明

拿测试实例跟已有的实例的比较,若测试实例跟训练实例一模一样,那毫无疑问该测试实例就是属于这一类,但情况并未都是如此,大部分情况下,得选择该测试实例跟那个已有的实例的“距离”最短,这个距离就得根据具体情况具体分析了,在求两实例的“距离”前得先计算下,一实例在一个属性上表现出的多种特征之间的“距离”。所以得先定义来两特征之间的“距离”,再定义两实例的“距离”。

这个分类效果是显著的,但是不足之处也是明显的,因为懒惰,来一个实例,就得计算与其他已有实例的距离,那代价是高。

 

贝叶斯分类器

P(C| A1,A2,...A3) 指事件C在事件A1A2A3都发生的情况下的概率,根据贝叶斯公式

P(C)和P(A1, A2...An)是容易得到的,但是P(A1, A2...An | C)是难以得到的,而在假设所有事件是独立的情况下,P(A1, A2, …, An |C) = P(A1| Cj) P(A2| Cj)… P(An| Cj)  j is from 1 to n.

这样的话,就可以很容易算出概率,再选择最大的概率。不足之处在于这个各事件之间未必是真正独立的。

 

转载于:https://www.cnblogs.com/chuanlong/archive/2013/05/01/3053594.html

你可能感兴趣的文章
冷门Javascript API——element.insertAdjacentHTML
查看>>
绘制希尔伯特曲线
查看>>
LOJ 572 「LibreOJ Round #11」Misaka Network 与求和——min_25筛
查看>>
test
查看>>
[精华][推荐]CAS SSO单点登录服务端客户端实例
查看>>
「hadoop」ssh
查看>>
pulseaudio备注
查看>>
PAT1064 Complete Binary Search Tree (30)(BST)
查看>>
FPGA负数的右移 计算
查看>>
ti processor sdk linux am335x evm /bin/create-sdcard.sh hacking
查看>>
转 Redis 总结精讲 看一篇成高手系统-4
查看>>
第一节:神经网络和深度学习
查看>>
HTML5_1
查看>>
node-webkit连接mysql
查看>>
HDU 1003:Max Sum
查看>>
【Spring】application.xml文件配置
查看>>
使用apache设置绑定多个域名或网站
查看>>
[转]VC包含外部文件寻找目录
查看>>
【UOJ#22】【UR#1】外星人
查看>>
Git config 配置文件
查看>>